HIP-C Protocol whole blood

Version 3.3

- Added CD8a BV605 in the DC/mono/NK Panel

Equipment

12x75mm tubes
Pipettes 10-1000 µl
Sterile tips
Vortex
Pipetboy
25ml disposable pipettes
Flow cytometer with 405nm; 488nm; 640nm, 561nm

Reagents

Conjugated Antibodies
Phosphate buffered saline (PBS)
10x BD FACS Lysing Solution Cat#349202
FACS-buffer: 12,5x Stock: 10g NaN3, 100ml 0,5M EDTA; 3,36g NaHCO3; 200ml H₂O; 100ml FCS; 500ml 20xPBS
BD Comp Beads Anti Mouse Ig Cat#51-90-9001229 / Cat#51-90-9001291
BD Multitest 6-Color TBNK Reagent incl. Trucount Tubes Cat#644611

Preparations

Dilute 10x BD FACS Lysing Solution 1:10 with H₂O Dilute 12,5x FACS-buffer Stock 1:12,5 with H₂O Prepare the antibody cocktails (see AK list FITMaN)

Staining Protocol

For the Compensation-control

- 1) Label 15 12x75mm tube with:
 - a) unstained
 - b) FITC (only needed in the B-cell Panel and DC/mono/NK Panel)
 - c) AF488 (only needed in the T-Cell Panel)
 - d) PE
 - e) PerCP-Cy5.5
 - f) PE-Cy7
 - g) APC
 - h) AF647 (only needed in the Treg Panel)
 - i) APC-H7
 - j) AF700
 - k) V450
 - I) V500
 - m) BV605
 - n) BV421 (only needed in the B-Cell Panel)
 - o) BV605 (only needed in the T-cell Panel and DC/mono/NK Panel)
- 2) Place one drop BD CompBeads Negative Control in tube a)
- 3) Place one drop BD CompBeads Anti-Mouse Ig in each other tubes b)– o)
- 4) Add associated µl Antibody to each tube

Example:

5μl SLAN FITC in tube b) labeled FITC 1,25μl CD183 AF488 in tube c) labeled AF488 5 μl CD25 PE in tube d) labeled PE and so on...

- 5) Mix gently
- 6) Incubate 20 minutes in the dark at RT
- 7) Centrifuge for 5 minutes at 400g
- 8) Remove the supernatant by pour off
- 9) Resuspend in 100-300µl FACS-buffer
- 10) Ready for analysing

For each panel

- 1) Place 100µl of gently mixed whole blood into appropriately labeled 12x75mm tube.
- 2) Add required amount PBS (see AK list FITMaN) to the appropriate tubes and mix gently
- 3) Add required amount of the antibody cocktail (see AK list FITMaN) to the appropriate tubes and mix gently.
- 4) Incubate 30 minutes in the dark at RT
- 5) Ery-lysing: Add 2ml 1x FACS BD Lysing Solution and mix immediately on a vortex device for 5secounds
- 6) Incubate 10 minutes in the dark at RT
- 7) Centrifuge for 5 minutes at 400g
- 8) Remove the supernatant by pour off
- 9) Wash the samples by resuspending in 2 ml FACS-buffer
- 10) Centrifuge for 5 minutes at 400g
- 11)Remove the supernatant by pour off
- 12)Resuspend in 100-300µl FACS-buffer
- 13) Ready for analysing

Instrument settings (to make sure that we all have the same)

We use a Fortessa with a 5 Laser configuration. 325nm, 405nm, 488nm, 640nm and 561nm FACS Diva Software 6.1.1 witch CST Module. For the FITMaN Panels we don't need the 325nm UV Laser.

- 1. Start the Cytometer, and make the usual daily performance check with CST Beads.
- 2. Mix in one 12x75mm FACS Tube one drop CST-Beads, and 300 μ l FACS Flow
- 3. Create a new Experiment and a new Specimen
- 4. Delete all Parameters in the Cytometer instrument settings you don't need.
- 5. In the Cytometer instrument settings switch FSC-A, FSC-H, FSC-W, and SSC-A, SSC-H, SSC-W on. We will use these parameters for the doublet discrimination.

atus	Parameters	Threshold	Laser C	ompensation (Ratio			
Pa	arameter			Voltage	Log	A	Н	W
• FSG				478		V	~	V
• SSC				264		V	V	V
 Ale 	xa Fluor 488			544	~	V		
• Per	CP-Cy5-5			539	~	V		
e PE				519	~	V		
e PE-	-Су7			463	~	V		
e APo	C			529	~	V		
 Ale 	xa Fluor 700			503	~	V		
e APo	C-H7			496	~	V		
 V45 	50			399	~	V		
• V50	00			463	~	V		
■ BV6	505			578	~	V		

- On a Global Worksheet create one Dot Plot with FSC-A vs. SSC-A and 10 Histogram-Plots with each color. AF488, PE, PerCP-Cy5.5, PE-Cy7, APC, APC-H7, AF700, V450, V500 abd BV605
- 7. Generate a gate around the singlet beads, and gates around the brightest population each histogram.
- 8. Create statistic view to see the Means of all Parameters.

	Alexa Flu P	erCP-Cy	PE-A	PE-Cy7-A	APC-A A	lexa Flu	APC-H7-A	V450-A	V500-A	BV605-A	
Population	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mea	
∑ P2	38,126	12,731	21,716	25,213	24,410	28,218	27,429	7,566	27,259	14,81	
	37,782	12,943	21,546	26,173	24,523	29,048	28,405	7,491	27,020	14,69	
⊠ P4	37,756	13,006	21,537	26,395	24,570	29,255	28,637	7,485	27,005	14,69	
⊠ P5	38,149	12,770	21,735	25,357	24,457	28,349	27,577	7,571	27,279	14,82	
⊠ P6	37,732	12,997	21,523	26,373	24,553	29,231	28,612	7,480	26,987	14,68	
	38,208	12,723	21,762	25,135	24,421	28,160	27,355	7,583	27,320	14,84	
⊠ P8	38,170	12,751	21,744	25,269	24,445	28,275	27,488	7,576	27,296	14,83	
⊠ P9	37,766	13,007	21,544	26,399	24,574	29,259	28,642	7,488	27,013	14,69	
☑ P10	37,884	12,898	21,599	25,971	24,509	28,870	28,198	7,513	27,093	14,73	
	37,757	13,013	21,539	26,422	24,576	29,279	28,666	7,485	27,006	14,69	

9. Adjust the PMT-Voltages to get the following Geo Means + - 1000: Without any COMPENSATION!!!

AF488	38000
PE	22000
PerCP-Cy5.5	13000
Pe-Cy7	25000
APC	24000
APC-H7	26000
AF700	28000
V450	7000
V500	27000
BV605	15000

- 10. Create 4 new Experiments
 - a. T-Cell Panel
 - b. Treg Panel
 - c. B-Cell Panel
 - d. DC/Mono/NK Panel
- 11. Create in each Experiment a new Specimen
- 12. Delete in each Experiment all Parameters in the Cytometer instrument settings.
- 13. Add associated Parameters for each Experiment
- 14. For the T-Cell Panel AF488, PerCP-Cy5.5, PE and so on for the Treg Panel PerCP-Cy5.5, PE, PE-Cy7 and so on for the B-Cell Panel FITC, PerCP-Cy5.5, PE, PE-Cy7 and so on for the DC/Mono/NK Panel FITC, PerCP-Cy5.5, PE and so on
- 15. Create in each Experiment a compensation Control Experiment =>Compensation Setup => Create compensation control
- 16. Measure the associated Compensation control Tubes in each Compensation control Specimen

- 17. Adjust the Gates in each histogram (normal worksheet) if it will not be automatically done
- 18. Calculate Compensation

 Experiment =>Compensation Setup =>Calculate compensation and
 "link and save" the settings to your Experiment
- 19. If compensation is fine, save the experiment "application settings" by right-clicking on cytometer settings. These application settings can be recalled in the next experiments, or duplicate the latest experiments/specimens
- 20. Create a new global worksheet in each experiment and a gating strategy like this

BD FACSDiva 7.0

Population	#Events	%Parent	%Total				
All Events	278,782	####	100.0				
doublet discrimination	269,364	96.6	96.6				
PBMC	139,113 51.6						
CD3+	78,944	56.7	28.3				
CD4+	56,153	71.1	20.1				
T-EMRA	896	1.6	0.3				
T-naive	32,577	58.0	11.7				
T-EM	7,240	12.9	2.6				
■ ■ EM TH1	2,185	30.2	0.8				
⊠ Q2-2	3,321	45.9	1.2				
⊠ EM TH2	291	4.0	0.1				
—	1,443	19.9	0.5				
T-CM	15,440	27.5	5.5				
⊠ cm TH1	2,600	16.8	0.9				
	4,862	31.5	1.7				
⊠ cm TH2	1,860	12.0	0.7				
□ 🖂 CM TH17	6,118	39.6	2.2				
⊠ DR+ CD38-	2,202	3.9	0.8				
⊠ DR+ CD38+	978	1.7	0.4				
⊠ DR- CD38-	23,906	42.6	8.6				
□ DR- CD38+	29,067	51.8	10.4				
	20,564	26.0	7.4				
⊠ DR+ CD38-'	3,872	18.8	1.4				
⊠ DR+ CD38+'	842	4.1	0.3				
├── <mark>∑</mark> DR- CD38-'	13,523	65.8	4.9				
⊠ DR- CD38+'	2,327	11.3	0.8				
T-naive low	1,780	8.7	0.6				
T-EMRA"	5,424	26.4	1.9				
T-naive"	5,911	28.7	2.1				
T-EM"	2,804	13.6	1.0				
T-CM"	1,475	7.2	0.5				
T-REMRA low	3,399	16.5	1.2				
CD4 CD8 DP	218	0.3	0.1				
CD4 CD8 DN	1,809	2.3	0.6				

Population	#Events
All Events	278,782
doublet discrimination	269,364
PBMC	139,113
CD3+	78,944
CD4+	56,153
T-naive	32,577
T-EMRA	896
T-EM	7,240
EM TH1	2,185
EM TH2	291
⊠ EM TH17	1,443
T-CM	15,440
⊠ CM TH1	2,600
⊠ CM TH2	1,860
⊠ CM TH17	6,118
□ DR+ CD38-	2,202
□ DR+ CD38+	978
□ DR- CD38-	23,906
□ DR- CD38+	29,067
CD8+	20,564
T-naive"	5,911
T-naive low	1,780
T-EMRA"	5,424
T-REMRA low	3,399
T-EM"	2,804
T-CM"	1,475
□ DR+ CD38-¹	3,872
☐ DR+ CD38+'	842
☐ DR- CD38-1	13,523
☐ DR- CD38+'	2,327
CD4 CD8 DP	218
CD4 CD8 DN	1,809

Population	#Events	%Parent	%Total
All Events	296,358	####	100.0
doublet discrimination	288,069	97.2	97.2
PBMC	147,936	51.4	49.9
CD4+	58,516	39.6	19.7
CD25+ CD127-	5,159	8.8	1.7
T-reg	2,561	49.6	0.9
HLA-DR+ T-reg	1,331	52.0	0.4

- 21. Adjust Threshold in FSC (maybe delete it) and set an new Threshold in AF700 at 500
- 22. Measure 300.000 counts if possible.

Alternative: a specific population stopping gate should be determined for each panel. E.g. 40'000 CD4 T-cells, or 30,000 B-cells etc. These numbers should be calculated in a way that the downstream hierarchy and less represented populations are in a sufficient number. In this way, in case of different cell frequencies, the cell populations are still numerically comparable among samples

	Tcell-Panel	Preis	μl	reicht für	Clone	Treg-Panel	Preis	μl	eicht für	Clone	Bcell-Panel	Preis	μl	reicht für	Clone	DC/mono/NK	Preis	μlr	reicht für	Clone
Fitc											CD24					Slan				
AF488	CD183 (CXCR3)				G025H7										ML5					
Filter 530/30	1,25µl = 1:120	206,82	500	400	BL#353710						10μl =1:15				BD#555427	5μl = 1:30	230,00	1000	200	Milteny#130-093-027
PerCP-Cy5.5	CD4				RPA-T4	CD4				RPA-T4	CD19				HIB19	CD123		П		7G3
Filter 695/40	1,25µl = 1:120	237,20	250	200	BD#560650	1,25µl = 1:120	237,20	250	200	BD#560650	2,5µl = 1:60	237,20	250	100	BD#561295	10μl = 1:15	174,41	500	50	BD#560904
PE-TexasRED Filter 610/20																				
PE	CD197 (CCR7)				150503	CD25				M-A251	CD10				HI 10a	CD56	-	\neg		MY31
Filter 586/15	10μl = 1:15	279,06	2000	200	BD#560765	5μl = 1:30	286,03	2000	400	BD#555432	10μl = 1:15				BD#332776	5μl = 1:30	442,50	2000	400	BD#345810
PE-Cy5	·																			
Filter 660/20																				
PE-Cy7	CD45RA				HI100	CD194 (CCI	R4)			1G1	IgD				IA6-2	CD11c		\neg		B-LY6
Filter 780/60	2,5µl = 1:60	199,33	250	100	BD#560675	2,5µl = 1:60	344,83	500	200	BD#557864	2,5µl = 1:60	101,53	500	200	BL#348210	2,5µl = 1:60	209,29	250	100	BD#561356
APC	CD38				HIT2						CD38				HIT2	CD16				873.1
AF647						CD127				hIL-7R-M21										
Filter 670/30	10μl = 1:15	357,79	2000	200	BD#555462	10μl = 1:15	164,44	500	50	BD#560905	10μl = 1:30	357,79	2000	200	BD#555462	5μl = 1:30	204,31	250	50	BD#561304
AF700	CD45				HI30	CD45				HI30	CD45				HI30	CD45		\Box		HI30
Filter 730/45	0,5μl = 1:300	169,22			BL#304024	0,5μl = 1:300	169,22			BL#304024	0,5µl = 1:300	169,22			BL#304024	0,5μl = 1:300	169,22			BL#304024
APC-H7	CD8				SK1	CD45RO				UCHL1	CD20				L27	CD3+CD19+CD20	471,40	500	200	CD3 BD#641397 Clone SK7
Filter 780/60	2,5µl = 1:60	471,40	500	200	BD#641400	2,5µl = 1:60	199,33	250	100	BD#561137	2,5µl = 1:60	471,40	500	200	BD#641396	2,5µl = 1:60	204,31	250	100	CD19 BD#560727 Clone HIB19
V450	CD3				UCHT1	CD3				UCHT1						CD14		П		MoP9
Brilliant Violet 421											CD27				0323					
Filter 450/50	2,5µl = 1:60	305,96	600	240	BD#560365	2,5µl = 1:60	305,96	600	240	BD#560365	2,5µl = 1:60	131,61	500	200	BL#302824	2,5µl = 1:60	305,96	600	240	BD#560349
V500	HLA-DR				L243(G46-6)	HLA-DR				L243(G46-6)	CD3				UCHT1	HLA-DR		П		L243(G46-6)
Filter 525/50	2,5µl = 1:60	393,67	500	200	BD#561224	2,5µl = 1:60	393,67	500	200	BD#561224	2,5µl = 1:60	393,67	500	200	BD#561416	2,5µl = 1:60	393,67	500	200	BD#561224
Brilliant Violet 605	CD196 (CCR6)				G034E3											CD8a				RPA-T8
Filter 605/40	1,25µl = 1:120	308,35	500	400	BL#353420											1,25µl = 1:120		125	100	BL#301039
100μl Vollblut+																				
Mastermix:	34,25 μΙ					26,75μl					43µl					41,75µl				
	+15,75 μl PBS					+23,25μl PBS					+7 μl PBS					+ 8,25 μl PBS				

Trucount to determine the absolute cell number

- 1) Place 50µl of gently mixed whole blood into appropriately labeled 12x75mm Trucount tube.
- 2) Add 20µl antibody cocktail (6-Color TBNK) to the appropriate tubes and mix gently.
- 3) Incubate 30 minutes in the dark at RT
- 4) Ery-lysing: Add 400µl 1x FACS BD Lysing Solution and mix immediately on a vortex device for 5secounds
- 5) Incubate at least 15 minutes in the dark at RT
- 6) Ready for analyzing. Measure within 60 minutes

Instrument settings

- 1. Use the same Instrument settings like in FITMaN.
- 2. Set the FSC SSC to Log-Scale
- 3. delete the FSC and the AF700 Threshold and set an new Threshold to PerCP-Cy5.5 at 500

- 4. Create a Global Worksheet and the gating strategy like in the example
- 5. Adjust voltage of FSC SSC like in the example
- 6. Measure 50.000 counts
 Alternative: a specific population stopping gate should be determined.
 E.g. 20'000 Lymphocytes.

Calculate the absolute cell number:

